

BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR Secondary Co-Ed DAY CUM BOYS' RESIDENTIAL SCHOOL

PRE BOARD-1- 2024

MATHEMATICS (041)

	XII Science 16/11/24	e MARKING SCHEME	Duration: 3 Hour Max. Marks: 80
	Answer	Scheme	
1	(C)	Bijective	
2	(C) (B)	$5\pi/6$	
3	(A)	[1 na]	
0	(11)		
4	(A)	0	
5	(B)	25	
6	(C)	18	
7	(A)	-1	
8	(C)	$f(-\frac{1}{2}) = f(-\frac{1}{2})$	
9	(B)	Minimum at x=1	
10	(B)	$\frac{(logx)^6}{6} + C$	
11	(C)	9	
12	(B)	9/2 sq.units	
13	(B)	32/3	
14	(D)	None of these	
15	(B)	3,2	
16	(A)	11/36	
17	(A)	Coincident	
18	(A)	0.39	
19	(D)		
20	(A)		
21	Injectivit	$y: x^3 + x = y^3 + y \Longrightarrow x = y$	
	Surjectiv	ity: for every $y \in \mathbb{R}$ there exist t ε R such that f(t) = y. So, f is surjective	
	Hence f	is a bijection.	
22	By right	t triangle rule of trigonometry, $\sin^{-1} 3/5 = \cos^{-1} 4/5$	
		re value is 4/5	
	OR _		
	$\tan^{-1}\sqrt{3}$	•	
23		ng $(-\infty, -1)$	
		ng (-1,∞)	
24	Let $x^2 + 1$		
	$\int \frac{dt}{t^{3/2}} = -2$	$2/\sqrt{x^2+1}$	

$\int_{2}^{3} -(x-3)dx + \int_{3}^{5}(x-3)dx = \frac{1}{2}$ $25 \qquad (2\vec{a} + \vec{b} + \vec{c})^{2} = 4x1+1+1 \qquad (2\vec{a} + \vec{b} + \vec{c}) = \sqrt{6}$ $26 \qquad \text{Apply log to both side, ylogx = x log y} \qquad \text{Differentiating both side w.r.t x} \qquad \frac{dy}{dx} = \frac{y(xlogy-y)}{x(ylogx-x)}$ $27 \qquad \text{Let } x^{2} = t, 2xdx = dt \qquad 1/2\int \frac{tdt}{t^{2}+3t+2} \text{ integrate with the help of partial fraction method} \\ \log x^{2}+2 - \frac{1}{2}\log x^{2}+2 + C \qquad \text{OR} \qquad \text{Apply the identity of } (a-b)^{3} \text{ and integrate} \qquad \frac{x^{4}}{4} + \frac{1}{2x^{2}} \cdot \frac{3}{2}x^{2}+3\log x + C \qquad 28 \qquad \text{By using variable separable method, we have} \\ \frac{x^{2}}{2} + x + \log(x-1) + \frac{y^{2}}{2} + \log(y+1) + C \qquad 29 \qquad P(X=0) = 1/8 \\ P(X=1) = 3/8 \\ P(X=2) = 3/8 \\ P(X=3) = 1/8 \end{cases}$		
25 $ (2\vec{a} + \vec{b} + \vec{c})^2 = 4x1+1+1 $ $ (2\vec{a} + \vec{b} + \vec{c}) = \sqrt{6} $ 26 Apply log to both side, ylogx = x log y Differentiating both side w.r.t x $ \frac{dy}{dx} = \frac{y(xlogy-y)}{x(ylogx-x)} $ 27 Let x ² = t, 2xdx = dt $1/2\int \frac{tdt}{t^2+3t+2}$ integrate with the help of partial fraction method $\log x^2 + 2 - \frac{1}{2}\log x^2 + 2 + C$ OR Apply the identity of (a-b) ³ and integrate $ \frac{x^4}{4} + \frac{1}{2x^2} \frac{3}{2}x^2+3\log x + C $ 28 By using variable separable method, we have $ \frac{x^2}{2} + x + \log(x - 1) + \frac{y^2}{2} + \log(y + 1) + C $ 29 P(X=0) =1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8		OR $\int_{a}^{3} -(x-3)dx + \int_{a}^{5} (x-3)dx = -\frac{1}{2}$
26 Apply log to both side, ylogx = x log y Differentiating both side w.r.t x $\frac{dy}{dx} = \frac{y(xlogy-y)}{x(ylogx-x)}$ 27 Let x ² = t, 2xdx = dt 1/2 $\int \frac{tdt}{t^{2}+3t+2}$ integrate with the help of partial fraction method log x ² + 2 - $\frac{1}{2}$ log x ² + 2 + C OR Apply the identity of (a-b) ³ and integrate $\frac{x^{4}}{4} + \frac{1}{2x^{2}} \frac{3}{2}x^{2}$ +3logx +C 28 By using variable separable method, we have $\frac{x^{2}}{2} + x + \log(x - 1) + \frac{y^{2}}{2} + \log(y + 1) + C$ 29 P(X=0) =1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8	25	$(2\vec{a} + \vec{b} + \vec{c})^2 = 4x1+1+1$
26 Apply log to both side, ylogx = x log y Differentiating both side w.r.t x $\frac{dy}{dx} = \frac{y(xlogy-y)}{x(ylogx-x)}$ 27 Let x ² = t, 2xdx = dt 1/2 $\int \frac{tdt}{t^{2}+3t+2}$ integrate with the help of partial fraction method log x ² + 2 - $\frac{1}{2}$ log x ² + 2 + C OR Apply the identity of (a-b) ³ and integrate $\frac{x^{4}}{4} + \frac{1}{2x^{2}} \frac{3}{2}x^{2}$ +3logx +C 28 By using variable separable method, we have $\frac{x^{2}}{2} + x + \log(x - 1) + \frac{y^{2}}{2} + \log(y + 1) + C$ 29 P(X=0) =1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8		$(2\vec{a} + \vec{b} + \vec{c}) = \sqrt{6}$
$\frac{dy}{dx} = \frac{y(xlogy-y)}{x(ylogx-x)}$ 27 Let x ² = t, 2xdx = dt 1/2 $\int \frac{tdt}{t^{2}+3t+2}$ integrate with the help of partial fraction method $\log x^{2} + 2 - \frac{1}{2} \log x^{2} + 2 + C$ OR Apply the identity of (a-b) ³ and integrate $\frac{x^{4}}{4} + \frac{1}{2x^{2}} - \frac{3}{2}x^{2} + 3\log x + C$ 28 By using variable separable method, we have $\frac{x^{2}}{2} + x + \log(x - 1) + \frac{y^{2}}{2} + \log(y + 1) + C$ 29 P(X=0) =1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8	26	
27 Let $x^2 = t$, $2xdx = dt$ $1/2\int \frac{tdt}{t^2+3t+2}$ integrate with the help of partial fraction method $\log x^2 + 2 - \frac{1}{2} \log x^2 + 2 + C$ OR Apply the identity of $(a-b)^3$ and integrate $\frac{x^4}{4} + \frac{1}{2x^2} - \frac{3}{2}x^2 + 3\log x + C$ 28 By using variable separable method, we have $\frac{x^2}{2} + x + \log(x - 1) + \frac{y^2}{2} + \log(y + 1) + C$ 29 P(X=0) = 1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8		
27 Let $x^2 = t$, $2xdx = dt$ $1/2\int \frac{tdt}{t^2+3t+2}$ integrate with the help of partial fraction method $\log x^2 + 2 - \frac{1}{2} \log x^2 + 2 + C$ OR Apply the identity of $(a-b)^3$ and integrate $\frac{x^4}{4} + \frac{1}{2x^2} - \frac{3}{2}x^2 + 3\log x + C$ 28 By using variable separable method, we have $\frac{x^2}{2} + x + \log(x - 1) + \frac{y^2}{2} + \log(y + 1) + C$ 29 P(X=0) = 1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8		$\frac{dy}{dy} = \frac{y(xlogy - y)}{y(xlogy - y)}$
$1/2 \int \frac{tdt}{t^2+3t+2} \text{ integrate with the help of partial fraction method} \\ \log x^2+2 - \frac{1}{2}\log x^2+2 + C \\ OR \\ Apply the identity of (a-b)^3 and integrate \\ \frac{x^4}{4} + \frac{1}{2x^2} - \frac{3}{2}x^2+3\log x + C \\ 28 \\ By using variable separable method, we have \\ \frac{x^2}{2} + x + \log(x-1) + \frac{y^2}{2} + \log(y+1) + C \\ 29 \\ P(X=0) = 1/8 \\ P(X=1) = 3/8 \\ P(X=2) = 3/8 \\ P(X=3) = 1/8 \\ \end{array}$	27	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	
OR Apply the identity of $(a-b)^3$ and integrate $\frac{x^4}{4} + \frac{1}{2x^2} - \frac{3}{2}x^2 + 3\log x + C$ 28 By using variable separable method, we have $\frac{x^2}{2} + x + \log(x-1) + \frac{y^2}{2} + \log(y+1) + C$ 29 P(X=0) = 1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8		
Apply the identity of (a-b) ³ and integrate $\frac{x^4}{4} + \frac{1}{2x^2} \cdot \frac{3}{2} x^2 + 3\log x + C$ 28 By using variable separable method, we have $\frac{x^2}{2} + x + \log(x - 1) + \frac{y^2}{2} + \log(y + 1) + C$ 29 P(X=0) =1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8		$\log x^2 + 2 - \frac{1}{2}\log x^2 + 2 + C$
$\frac{x^{4}}{4} + \frac{1}{2x^{2}} - \frac{3}{2}x^{2} + 3\log x + C$ 28 By using variable separable method, we have $\frac{x^{2}}{2} + x + \log(x - 1) + \frac{y^{2}}{2} + \log(y + 1) + C$ 29 P(X=0) =1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8		OR
28 By using variable separable method, we have $\frac{x^{2}}{2} + x + \log(x - 1) + \frac{y^{2}}{2} + \log(y + 1) + C$ 29 P(X=0) =1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8		
$\frac{x^2}{2} + x + \log(x - 1) + \frac{y^2}{2} + \log(y + 1) + C$ 29 P(X=0) =1/8 P(X=1) = 3/8 P(X=2) = 3/8 P(X=3) = 1/8		$\frac{x^4}{4} + \frac{1}{2x^2} - \frac{3}{2}x^2 + 3\log x + C$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	
P(X=1) = 3/8 $P(X=2) = 3/8$ $P(X=3) = 1/8$		$\frac{x^2}{2} + x + \log(x-1) + \frac{y^2}{2} + \log(y+1) + C$
P(X=1) = 3/8 $P(X=2) = 3/8$ $P(X=3) = 1/8$		2 2
P(X=2) = 3/8 P(X=3)= 1/8	29	P(X=0) =1/8
P(X=3)= 1/8		P(X=1) = 3/8
		OR
$E_1 = Six occurs, E_2 = six does not occur, A = man reports that its six$		
$P(E_1) = 1/6, P(E_2) = 5/6, P(A/E1) = \frac{3}{4}, P(A/E2) = \frac{3}{4}$ $P(E_1/A) = \frac{3}{8}$		
$\frac{ 1 (21)/(1-3) ^2}{ 30 } \frac{ \sqrt{3}\vec{a} - \vec{b} ^2}{ ^2 = 1}$	30	
$3-2\sqrt{3}(\vec{a}\cdot\vec{b})+1=1$		
$\cos\theta = \frac{\sqrt{3}}{2} = \frac{\pi}{6}$		<u> </u>
31 Shortest distance between two given line $d = \left \frac{(a_2 \cdot a_1)(b_1 x b_2)}{ b_1 x b_2 } \right = 6/\sqrt{5}$	31	Shortest distance between two given line $d = \left \frac{(a_2 \cdot a_1)(b1xb2)}{ b1xb2 } \right = 6/\sqrt{5}$
$a_2-a_1 = -3i+2k$		
$b_1xb_2 = 2i - j$		
$ b_1xb_2 = \sqrt{5}$		$ b_1xb_2 = \sqrt{5}$
32 Reflexivity: ab=ba, (a,b) R (b,a), therefore R is refelixive	32	
Symmetry: ad=bc, cb=da, (c,d)R(a,b) , therefore R is symmetric.		
Transitive: ad=bc and cf=de hence af=be, therefore R is transitive.		
Since R satisfy all three condition so, its equivalence relation.		Since R satisfy all three condition so, its equivalence relation.
33 [4 -5 1]	32	[4 -5 1]
$\begin{vmatrix} 33 \\ A^{-1} = \begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix}$		$A^{-1} = \begin{bmatrix} 2 & 0 & -2 \end{bmatrix}$
X= 9/5, Y= 2/5, Z= 7/5		
34 Proper figure	34	
$\int_{-2}^{4} \frac{3x+2}{2} - \frac{3}{4} x^2 dx$		$\int_{-2}^{-2} \frac{dx^2}{2} - \frac{d}{4} x^2 dx$
27sq.unit		

	OR		
	Proper figure		
	$2 \int_0^{1/2} 2\sqrt{x} dx + 2 \int_{1/2}^{3/2} \sqrt{\frac{9}{4}} - x^2 dx$		
	$\frac{\sqrt{2}}{6} + \frac{9\pi}{8} - \frac{9}{4} \sin^{-1}\frac{1}{3}$ sq. units		
35	Proper graph		
	Corner points (0,0), (2,0), (8/5, 6/5), (0,2)		
	Maximum value at (0,2) is 10		
	OR		
	Proper graph		
	(0,0), (6,0), (4,3), (0, 19/3)		
	Maximum production is 320 at (4,3)		
36	(A) 120 , (B) 180, (C) 300		
37	(A) $\frac{\pi}{2}(75r-r^3)$		
	(B) $-3\pi r$		
	(C) V is max at r=5cm		
38	(A) 50/3,40/3		
	(B) (0,20), (50/3,40/3) ,(30,0)		
	(C) (30,0)		